Optimization of multiple performance characteristics in turning using Taguchi’s quality loss function: An experimental investigation

نویسندگان

  • Ashok Kumar Sahoo
  • Tanmaya Mohanty
چکیده

Article history: Received January 1 2012 Received in revised format April 15 2013 Accepted April 15 2013 Available online April 15 2013 Cutting force and chip reduction coefficient is the important index of machinability as it determines the power consumption and amount of energy invested in machining actions. It is primarily influenced by process parameters like cutting speed, feed and depth of cut. This paper presents the application of Taguchi’s parameter design to optimize the parameters for individual responses. For multi-response optimization, Taguchi’s quality loss function approach is proposed. In the present investigation, optimal values of cutting speed, feed and depth of cut are determined to minimize cutting force and chip reduction coefficient during orthogonal turning. The effectiveness of the proposed methodology is illustrated through an experimental investigation in turning mild steel workpiece using high speed steel tool. © 2013 Growing Science Ltd. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

Mathematical Modeling and Analysis of Spark Erosion Machining Parameters of Hastelloy C-276 Using Multiple Regression Analysis (RESEARCH NOTE)

Electrical discharge machining has the capability of machining complicated shapes in electrically conductive materials independent of hardness of the work materials. This present article details the development of multiple regression models for envisaging the material removal rate and roughness of machined surface in electrical discharge machining of Hastelloy C276. The experimental runs are de...

متن کامل

Finding efficient frontier of process parameters for plastic injection molding

Product quality for plastic injection molding process is highly related with the settings for its process parameters. Additionally, the product quality is not simply based on a single quality index, but multiple interrelated quality indices. To find the settings for the process parameters such that the multiple quality indices can be simultaneously optimized is becoming a research issue and ...

متن کامل

Experimental Investigation of Surface Roughness in Turning Operation of 16MNCR5

Machining operations are involv3ed in many manufacturing industries. Turning process is one of the most fundamental cutting processes. Cutting used in metal cutting. Surface finish and dimensional tolerances are used to determine quality of product and are the important quality attributes of turned product. In the present paper of investigation the experimental work has been employed for the op...

متن کامل

Simultaneous Optimization of Correlated Multiple Surface Quality Characteristics of Mild Steel Turned Product

Present work highlights application of utility theory combined with Principal Component Analysis (PCA) and Taguchi’s robust design for simultaneous optimization of correlated multiple surface quality characteristics of mild steel machined product prepared by straight turning operation. The study aims at evaluating the most favorable process environment followed by an optimal parametric combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013